
A BFO-ready version of gist
Dave McComb, Co-Founder, CEO, Semantic Arts

The Federal Government and Life Sciences Life Sciences companies are moving toward
adoption of the Basic Formal Ontology (BFO).

We have aligned the Semantic Arts foundational ontology (gist) with BFO
to help these communities.

This paper describes how and why we did this.

Background
An upper ontology is a high-level data model that can be specialized to create a domain
specific data model. A good upper ontology is a force multiplier that can speed the
development of your domain model. It promotes interoperability and can be used as the
basis for an information system. Two domain models derived from the same upper
ontology are far easier to harmonize.

gist (not an acronym, but the word meaning “get the essence of”) is an upper ontology,
focused on the enterprise information systems domain. It was initially developed by
Semantic Arts in 2007 and has been refined in over 100 commercial implementation
projects. It is available for free under a creative commons’ attribution license at
https://www.semanticarts.com/gist/

BFO was developed at the University at Buffalo in 2002 and has been used in hundreds of
ontology projects and cited in as many papers. The focus has been on philosophical
correctness and has been adopted primarily in life sciences and more recently the federal
government. It is available https://basic-formal-ontology.org

BFO and gist share a great deal in common:

• Simple – the current version of gist has 211 concepts (98 classes and 113 properties).
The current version of BFO has 76 concepts (36 classes and 40 properties). We share the
belief that the upper ontology should have the fewest concepts that provide the greatest
coverage.

• Formality – most of the concepts within both ontologies have very rigorous formal
definitions. The axioms within BFO are primarily defined in first order logic, which are not
available to the owl-based editors and reasoners - but they have developed an owl

https://www.semanticarts.com/gist/
https://basic-formal-ontology.org/

version. Half of their definitions are simple subsumption. The other half have subclass
restrictions that don’t have as much inferential value as equivalent class axioms. BFO is
one of the few other ontologies we have come across that makes extensive use of high
level disjoints. It is the combination of formal definitions with high level disjoints that is
the best way to detect logical inconsistencies. gist is also highly axiomized. Half of all
gist classes have full formal definitions of the equivalent class variety.

• Breadth – both BFO and gist were designed to provide covering concepts for the
maximum number of domain concepts. A well-designed domain ontology, derived from
either starting point, should have few or no classes that are not derived from the upper
ontology classes. In the early days of gist, we created some domain classes without
derivation. But as we evolved gist we now find “orphans” (classes not descended from
gist classes) to be rare. BFO with its high-level abstract classes certainly has the potential
to cover virtually all possible domain classes, but in practice we find many BFO compliant
ontologies with large numbers of orphan classes.

• Active Evolution – both ontologies are in continual use and have active user
communities. Both are well organized with major and minor releases including the ability
to accept suggestions from users. Both are being used in production systems throughout
the world.

Why Now?
In the early days of semantic adoption there were many options for an upper ontology.
BFO, Dolce, Sumo and OpenCyc were considered the main contenders.

At Semantic Arts, we didn’t see a need to adopt BFO or any of the other upper
ontologies. They didn’t contain the key concepts that we needed to implement
enterprise systems, and they were very hard to explain to subject matter experts and
project sponsors. We invest significant effort making sure our ontologies are understood
by those that both implement and consume them.

Recently we have considered committing to both schema.org and ISO 15926. Neither of
these purports to be an upper ontology. However, when we look at them in detail, we
find they are pretty close to being upper ontologies by scope and positioning. In many
ways these ontologies are more pragmatic and closer to what we are trying to achieve.

Schema.org is promoted by a consortium led by Google. Its primary use case is to make
internet search more accurate by standardizing on many of the terms used for business
descriptions. The pragmatic value for companies that tag their content with schema.org is
major improvements in web searching. We also know that schema.org can be easily
aligned with gist. This is how Schema App (https://www.schemaapp.com) built their
offering. While schema.org is a good solution for finding and describing a company’s
offerings, it wasn’t designed for our primary purpose, which is to help a firm run their
business.

https://www.schemaapp.com/

ISO 15926 emerged from the Oil & Gas industry and is widely used in process
manufacturing industries. The architecture is abstract and, in theory, could be applied in
a much broader way.

Up until now we didn’t see much advantage in reducing flexibility in the pursuit of our
core mission by committing to these candidate upper ontology and upper ontology-like
models.

Motivation
We were driven to create an alignment with BFO based on input from some of our clients.

The first motivator is the huge volume of life science ontologies that (at least) purport to
be based on BFO. The reason we say “purport” is that we have sampled many life
science ontologies for their degree of commitment to BFO. Our measure of commitment
is what percentage of their named classes are subclasses of BFO classes. Or to use the
terminology earlier, the number of orphan classes they contain. We find many where
fewer than half of the classes are proper descendants of BFO primitives.

The OBO (Open Biological and Biomedical Ontologies) Foundry is a great resource for
ontologies in the life sciences space. That said, there are over 8 million classes in OBO
alone, that purport to conform to BFO, which gives other life science ontologies a reason
to seek alignment.

The other development was the DoD’s publication of “Principles of The DoD-IC Ontology
Foundry” (which is still in draft status). In this document the DoD have declared that all
ontology related work within the defense community shall conform to BFO (and the
Common Core Ontology, which we will pick up in a subsequent white paper).

For people who must conform to BFO (the defense community) this provides them with a
more pragmatic way to build domain models while still complying with the directive. For
life science practitioners this also provides assurance that their work will align with life
science orthodoxy.

How to Get Started
This illustration shows how the key pieces fit together.

This file will bring in compatible versions of both gist and BFO. These arrows represent
the import statements that bring in these ontologies. As we suggest in the tips section
you may want to add the redundant import to directly import the same version of gist to
your ontology.

This is what you will find when you look at the merged ontology in Protege. It is much
easier to see which concepts came from BFO and which came from gist when you view
using the “Render by prefixed name” option. The BFO class names are in the obo
namespace, start with BFO and are numbers.

The capitalized terms starting with gist are from gist.

You can download gistBFO at
https://github.com/semanticarts/gistBFO

The alternative display “Render by label (rdfs:label)” it is still pretty easy to tell how they
blended together. The BFO labels are lower case. (the order is slightly different because
the labels sort differently from the class names, but the hierarchy is the same)

As you will see, almost all the gist classes are proper subclasses of BFO with three
exceptions.

• Artifact – things that were intentionally built.
• Place – locatable in the world
• Unit of Measure – a standard amount used to measure or specify things.

The first two of these are convenience classes that group dissimilar items underneath.
The “Artifact” class groups physical and non-physical things that were intentionally built.
“Place” groups geospatial regions on the earth with physical items that we often refer to
as places, such as landmarks and buildings. Because they subsume items that are
disjoint, they could not be subsumed under a single BFO class. But each of their
subclasses is aligned with BFO so there is no ambiguity there.

We were not sure where “Units of Measure” fit in BFO, so rather than create
inconsistencies we opted to leave UoM out of the BFO alignment. CCO went with our
first inclination, which was that it was a “generically dependent continuant” (in gist-speak
“content”). In fact, CCO went further and said that it was “descriptive information
content entity” which I suppose it could be. But these focus on the content-ness of the
unit. A case can be made that a unit of measure (say “inch”) is a special case, a reference

case or a magnitude, which in BFO is a “quality,” and more specifically a “relational
quality.” For the time being we’ll leave gist:UnitOfMeasure an orphan, but for any specific
purpose if people knew that it would be safe, they could declare it a “generically
dependent continuant.”

If any of our alignments are inappropriate, we’d be happy to change.

We have done some alignment on the properties. There are some structural differences
in the use of properties that will probably cause users of gistBFO to either use gist
properties or BFO properties and not mix and match, however where there is some
equivalence we’ve recorded.

BFO makes extensive use of inverse properties. There are only 6 properties in BFO that
do not have inverses. After years of discouraging the use of inverses, we finally
eliminated them altogether in gist. When using an ontology for definitional purposes
inverses can be handy, but there are reasons to avoid them in production systems
including ambiguity, inconsistency and performance issues. There is a brief white paper
here: https://www.semanticarts.com/named-property-inverses-yay-or-nay/ and a longer
discussion on here
https://www.youtube.com/watch?v=uz2GVWadBjg&list=PLk2kJrehubb4dc3e5Db5Lvv9W
MaOhV3V7&index=4

BFO uses domain and range extensively. Gist uses them sparingly. We have observed in
other ontologies being over specific on domain and range has made properties less
reusable and contributes to unnecessary concept bloat. Because of the abstractness of
BFOs classes this isn’t as much a problem, but it is a stylistic difference.

In BFO there are only four property pairs that participate in any class definitions: location
of/located in, continuant part of/ has continuant part, has occurrent part/occurrent part of
and has temporal part / temporal part of. We have aligned with these.

Some tips
We recommend anyone using gistBFO, and especially those that are contemplating
building artifacts that may be used by BFO and non BFO communities, to primarily rely
on the gist concepts when defining your domain specific classes. Doing so will make it
far easier to explain to your stakeholders. And it will not sacrifice any of the BFO
philosophical grounding as all the gist concepts (except unit of measure) algin with BFO.

The other advantage, suggested by the dotted line in the “how to get started” section, is
that if you have defined all your concepts in gist terms, and you need to implement in a
non BFO environment you can just drop the import of gistBFO and the BFO references
will disappear, and nothing else needs to change.

If you are using BFO and gist in the Life Sciences arena, you might want to consider what
we are doing with our Life Sciences clients: treating most of the classes in OBO as
instances in an implementation ontology. Depending on your use case this might involve

https://www.semanticarts.com/named-property-inverses-yay-or-nay/
https://www.youtube.com/watch?v=uz2GVWadBjg&list=PLk2kJrehubb4dc3e5Db5Lvv9WMaOhV3V7&index=4
https://www.youtube.com/watch?v=uz2GVWadBjg&list=PLk2kJrehubb4dc3e5Db5Lvv9WMaOhV3V7&index=4

punning (treating and class and instance interchangeably) or just use the rdfs:seeAlso
annotation to resolve the instance to its class.

Coming soon: CCO ready gist
The Common Core Ontology is a DoD initiated project. It is more similar to gist in that
the classes are more concrete and more easily understood by domain experts. It is
different from gist in that it consists of 1417 classes and 275 properties and is growing.
As such it is almost ten times as complex as gist.

We are working on alignment. Stay tuned, coming soon.

